Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions.

نویسندگان

  • Reinaldo DiPolo
  • Luis Beaugé
چکیده

The Na(+)/Ca(2+) exchanger's family of membrane transporters is widely distributed in cells and tissues of the animal kingdom and constitutes one of the most important mechanisms for extruding Ca(2+) from the cell. Two basic properties characterize them. 1) Their activity is not predicted by thermodynamic parameters of classical electrogenic countertransporters (dependence on ionic gradients and membrane potential), but is markedly regulated by transported (Na(+) and Ca(2+)) and nontransported ionic species (protons and other monovalent cations). These modulations take place at specific sites in the exchanger protein located at extra-, intra-, and transmembrane protein domains. 2) Exchange activity is also regulated by the metabolic state of the cell. The mammalian and invertebrate preparations share MgATP in that role; the squid has an additional compound, phosphoarginine. This review emphasizes the interrelationships between ionic and metabolic modulations of Na(+)/Ca(2+) exchange, focusing mainly in two preparations where most of the studies have been carried out: the mammalian heart and the squid giant axon. A surprising fact that emerges when comparing the MgATP-related pathways in these two systems is that although they are different (phosphatidylinositol bisphosphate in the cardiac and a soluble cytosolic regulatory protein in the squid), their final target effects are essentially similar: Na(+)-Ca(2+)-H(+) interactions with the exchanger. A model integrating both ionic and metabolic interactions in the regulation of the exchanger is discussed in detail as well as its relevance in cellular Ca(i)(2+) homeostasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional role of sodium-calcium exchange in the regulation of renal vascular resistance.

Our study aimed to assess a possible functional role of the Na(+)/Ca(2+) exchanger in the regulation of renal vascular resistance (RVR). Therefore, we investigated the effects of an inhibition of the Na(+)/Ca(2+) exchanger either by lowering the extracellular sodium concentration ([Na(+)](e)) or, pharmacologically on RVR, by using isolated perfused rat kidneys. Graded decreases in [Na(+)](e) le...

متن کامل

Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway.

For plants growing in highly saline environments, accumulation of sodium in the cell cytoplasm leads to disruption of metabolic processes and reduced growth. Maintaining low levels of cytoplasmic sodium requires the coordinate regulation of transport proteins on numerous cellular membranes. Our previous studies have linked components of the Salt-Overly-Sensitive pathway (SOS1-3) to salt toleran...

متن کامل

A novel lipid binding protein is a factor required for MgATP stimulation of the squid nerve Na+/Ca2+ exchanger.

Here we identify a cytosolic factor essential for MgATP up-regulation of the squid nerve Na(+)/Ca(2+) exchanger. Mass spectroscopy and Western blot analysis established that this factor is a member of the lipocalin super family of lipid binding proteins of 132 amino acids in length. We named it Regulatory protein of the squid nerve sodium calcium exchanger (ReP1-NCXSQ). ReP-1-NCXSQ was cloned, ...

متن کامل

Interaction of intracellular ion buffering with transmembrane-coupled ion transport

The role of the Na/Ca exchanger in the control of cellular excitability and tension development is a subject of current interest in cardiac physiology. It has been suggested that this coupled transporter is responsible for rapid changes in intracellular calcium activity during single beats, generation of plateau currents, which control action potential duration, and control of intracellular sod...

متن کامل

Sodium/calcium exchange: its physiological implications.

The Na+/Ca2+ exchanger, an ion transport protein, is expressed in the plasma membrane (PM) of virtually all animal cells. It extrudes Ca2+ in parallel with the PM ATP-driven Ca2+ pump. As a reversible transporter, it also mediates Ca2+ entry in parallel with various ion channels. The energy for net Ca2+ transport by the Na+/Ca2+ exchanger and its direction depend on the Na+, Ca2+, and K+ gradie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological reviews

دوره 86 1  شماره 

صفحات  -

تاریخ انتشار 2006